
Regex in Your SPL
An Easy Introduction

Michael Simko | Sr. Engineer, Instructor

September 2017 | Washington, DC

During the course of this presentation, we may make forward-looking statements regarding future events or
the expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could
differ materially. For important factors that may cause actual results to differ from those contained in our
forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live
presentation. If reviewed after its live presentation, this presentation may not contain current or accurate
information. We do not assume any obligation to update any forward looking statements we may make. In
addition, any information about our roadmap outlines our general product direction and is subject to change
at any time without notice. It is for informational purposes only and shall not be incorporated into any contract
or other commitment. Splunk undertakes no obligation either to develop the features or functionality
described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in
the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Forward-Looking Statements

THIS SLIDE IS REQUIRED FOR ALL 3 PARTY PRESENTATIONS.

Basics of Regular
Expressions

What is this Regex thing all about?

© 2017 SPLUNK INC.

1. Filtering. Eliminate unwanted data in
your searches

2. Matching. Advanced pattern matching
to find the results you need

3. Field Extraction on-the-fly

What’s in it for me?

Regex in
Splunk SPL

“A regular expression is
an object that
describes a pattern of
characters. Regular
expressions are used
to perform pattern-
matching and
‘search-and-replace’
functions on text.”
– w3schools.com

“Regular expressions
are an extremely
powerful tool for
manipulating text and
data…
If you don't use
regular expressions
yet, you will...”
– Mastering Regular Expressions,

O’Rielly, Jeffery E.F. Friedl

“A regular expression is
a special text string for
describing a search
pattern. You can think
of regular expressions
as wildcards on
steroids.”
– Regexbuddy.com (and others –

Original source unknown)

What Is Regex?
What People Say

Regex Basics

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	(letter,	#,	or	_)
\W	Not	a	Word	Character

Operators:
*	Zero	or	More
+	One	or	More
?	Zero	or	One

These	elements	work	together	to	specify	a	pattern

The Main Elements

Regex Basics
The Main Elements

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Operators:
*	Zero	or	More
+	One	or	More
?	Zero	or	One

Sample Regex: ^\d+\s\w+\d+\s\d+:\d+:\d+

^ Regex	is	Anchored	to	the	beginning	of	the	line
\d+ is	one	or	more	digits
\w+ is	one	or	more	word	characters
\s without	a	+	or	*	is	a	single	space
: is the literal character colon

Regex Basics
The Main Elements

Operators:
*	Zero	or	More
+	One	or	More
?	Zero	or	One

Sample Regex: ^\d+\s\w+\d+\s\d+:\d+:\d+

Matching	String:			22	Aug	2017 18:45:20 On	this	date,	Michael	made	BBQ	references

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Regex Basics
To Protect and Give Options

Special	Characters:
To	give	multiple	options:		|
The	pipe	character
(also	called	“or”)

Protecting	Characters:
To	escape	or	protect	special	characters:	\
The	Backlash	or	back-whack

Protect	periods,	[],(),{},	etc	when	you	want	to	
use	the	literal	character

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Regex Basics
To Protect and Give Options

Regex: Indiana|Purdue Regex:			\d+\.\d+\.\d+\.\d+

Purdue 8w	3l	.727		19w	5l	.792
Indiana 5w	4l	.500		15w	8l	.652

Login	Failure	From	192.168.12.145
Login	Success	From	10.35.36.37

(we’ll	do	the	above	a	different	way	later)

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Regex Basics
Only Some May Pass

Include	Characters:
[…]

Exclude	Characters:
[^…]

Example	usage:	[a-zA-Z0-9] Example	usage:	[^]

Inclusion	Characters:	
[]	Include
[^]	Exclude

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Regex Basics
Only Some May Pass

Regex:	server:[a-z0-9]+ Regex:	server:[^]

server:253fsf2,host=23423
server:	253fsf2,host=23423
server:253f sf2,host=23423

Keep	going	so	long	as	
you	hit	

characters	that	are	
lowercase	a-Z	or	0-9

Go	until	you	hit	a	space

Inclusion	Characters:	
[]	Include
[^]	Exclude

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Regex Basics
Say What Again

Repetition	is	used	to	define	the	exact	number	of	characters
Or	an	upper	and	lower	boundary	of	acceptable	characters

(or	the	exact	number	of	repetitions	of	a	pattern)

Repetition:		
{#}		Number	of	Repetitions
{#,#}	Range	of	Repetitions

Inclusion	Characters:	
[]	Include
[^]	Exclude

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Regex Basics
Say What Again

Regex:	IP: \d{3}\.\d{3}\.\d{3}\.\d{3} Regex:	IP: \d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}
IP:	172.106.190.100
IP:	10.24.255.2
IP:	224.252.2.52

IP:	172.16.19.1	
IP:	10.24.255.2
IP:	224.252.2.52

Repetition:		
{#}		Number	of	Repetitions
{#,#}	Range	of	Repetitions

Inclusion	Characters:	
[]	Include
[^]	Exclude

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Regex Basics
To Protect and Give Options

Use	to	specify	repetition	for	adjacent	elements
in	order	to	form	patterns

Later	we’ll	use	these	as	
“capture	groups”

Repetition:		
{#}		Number	of	Repetitions
{#,#}	Range	of	Repetitions

Inclusion	Characters:	
[]	Include
[^]	Exclude

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Logical	Groupings:		
()	Wrap	sets	of	the	Regex

Regex Basics
To Protect and Give Options

Alternate	Regex:		IP:	(\d{1,3}\.){3}\d{1,3}
IP:	172.16.19.1
IP:	10.24.255.2
IP:	224.252.2.52

Repeats	\d{1,3}\.	three	times
Then	tacks	on	the	last	\d{1,3}

Revisiting	the	IP	Matching	from	a	couple	of	slides	ago

Repetition:		
{#}		Number	of	Repetitions
{#,#}	Range	of	Repetitions

Inclusion	Characters:	
[]	Include
[^]	Exclude

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Logical	Groupings:		
()	Wrap	sets	of	the	Regex

Regex Basics

Repetition:		
{#}		Number	of	Repetitions
{#,#}	Range	of	Repetitions

Inclusion	Characters:	
[]	Include
[^]	Exclude

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Logical	Groupings:		
()	Wrap	sets	of	the	Regex

Named	Capture	Groups:
(?<CaptureGroupName>stuff)

This	names	the	capture	group	(e.g.,	logical	grouping).		
Now	when	you	return	the	capture,	it	has	a	name	and	not	just	
“Capture	Group	1”

The Last (Not so Basic) Element

Regex Basics
The Last (Not so Basic) Element

Regex:	user:\s(?<username>[^@]+)

Log	1:		blah	blah	user: msimko@splunk.com
Log	2:		more	blah	user: michael@kinneygroup.com

Go	until	we	hit	an	@
Capture	as	field	username
Anchor	off	user:\s	

Repetition:		
{#}		Number	of	Repetitions
{#,#}	Range	of	Repetitions

Inclusion	Characters:	
[]	Include
[^]	Exclude

Protection	Characters:
\ The	next	character	is	a	literal

Special	Characters:	
|	Alternative	/	“or”

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Logical	Groupings:		
()	Wrap	sets	of	the	Regex

Named	Capture	Groups:
(?<CaptureGroupName>stuff)

Regex in SPL
Using Regular Expressions to improve your SPL

▶ Field Extractions
• erex
• rex
• Interactive Field Extractor
• Props – Extract
• Transforms - Report

▶ Evaluation
• Regex
• match
• replace

Regex in Your SPL
Search Time Regex

Fields are fundamental
to Splunk Search

Regex provides granularity
when evaluating data

© 2017 SPLUNK INC.

Field Extractions
On the fly (No need to work ahead)

erex Command
Field Extractions Using Examples

Use	Splunk	to	generate	regular	expressions	by	providing	a	list	of	values	from	the	data.

▶ Scenario: Extract the first word of
each sample phrase from | windbag
• Step 1, find the samples
• Step 2, extract the field

erex Command
Field Extractions Using Examples

|	windbag |	erex	firstwords examples="Unë,	یؤلمن,	Կրնամ"

Easter	egg	that	
creates	sample	data

Examples	from	the	dataNew	Field	to	create

Erex Command: …| erex <newFieldName> examples=“example1,example2”

erex Command
Field Extractions Using Examples

|	windbag |	erex	firstwords
examples="Unë,	یؤلمن,	Կրնամ"

The	values	erex	generated	based	
on	the	samples

New	Field	created

erex Command
Field Extractions Using Examples

▶ Erex is a great introduction to using
regular expressions for field
extraction.
• Erex provides the rex that it generated
• Going forward, use the rex in your saved

searches and dashboards.
• Rex is more efficient

rex Command
Extract Fields Using Regular Expressions at Search Time

…	|	rex	field={what_field}	“FrontAnchor(?<extraction>{characters}+)BackAnchor”

Creates a Field Extraction

rex Command
Extract Fields Using Regular Expressions at Search Time

| windbag | rex field=sample "^(?<FirstWord>[\S+]*)"

Specify	the	field	to	rex	from

Front	Anchor
Named	Field	Extraction Grab	any	non-space	character

rex Command
Extract Fields Using Regular Expressions at Search Time

| windbag | rex field=sample
"^(?<FirstWord>[\S+]*)"

Named	Field	Extraction Grab	any	non-space	character

rex Command
Use Rex to Perform SED Style Substitutions

SED is a stream editor. It can be used to create substitutions in data.

Splunk uses the rex command to perform Search-Time substitutions.

rex Command
Use Rex to Perform SED Style Substitutions

Set	the	mode

s for	substitute
g for	global	
(more	than	once)

Substitute	the	stuff	between	the	first	/
and	second	/ with	the	stuff	between	
second	/ and	third	/

()	to	create	a	capture	group
\1	to	paste	capture	group

| windbag | search lang="*Norse"
| rex mode=sed "s/Old (Norse)/Not-so-old \1/g"

rex Command
Use Rex to Perform SED Style Substitutions

Set	the	mode

s for	substitute

()	to	create	a	capture	group
\1	to	paste	capture	group

…
| rex mode=sed "s/Old
(Norse)/Not-so-old \1/g"

Result:

© 2017 SPLUNK INC.

Evaluation
Using Regular Expressions for Pattern Matching

Regex Command
Filter Using Regular Expressions

sourcetype=fs_notification |	regex	chgs="^modtime"

Field	to	evaluate Regex

Match Function
Filter Using Regular Expressions

…	|	eval	n	=	if(match(field,”^MyRegex”,	1,	2)

match(SUBJECT),”REGEX”

sourcetype=access_combined_wcookie
|	eval com	=	if(match(referer,"http:.*\.com"),"True","False")

Match.	Returns	1	
for	it	matches,	0	
for	not.

Field	to	evaluate The	Regex

Replace Command
Switch Data at Search Time

Replace	field	values	with	the	values	you	specify
…	|	replace	“<whoever>” WITH	“<whomever>” IN	<target_field>

Replace Command
Switch Data at Search Time

Replace	field	values	with	the	values	you	specify
…	|	replace	“<whoever>” WITH	“<whomever>” IN	<target_field>

| windbag | replace "Euro" with "Euro: How is a currency a language" in lang

String	to	be	
replaced

String	to	replace	
with	

Field	in	which	to	
make	the	
replacement

operator operator

Persistence
Regular Expressions That Exist Outside Your Search

Until	this	point,	every	one	of	our	extractions	have	only	existed
in	the	search.		But,	what	if	we	want	them	to	persist?	Or	to	share	them?

1.	Interactive	Field	Extractor

2.	Extractions	in	Props	/	Transforms

– Walk-through UI

– You may want to rewrite the
generated Regex

– Does not require admin rights

– Straight editing in props.conf

– Requires Admin Rights (or an
admin to put in place)

– Edit directly in transforms.conf

– Invoked by props.conf

– Requires Admin Rights (or an
admin to put in place)

Persistent Field Extractions
Comparing The Persistent Field Extractions

Interactive	Field	Extractor Extract	in	Props Report	in	Transforms

Q&A
Michael Simko | Sr. Engineer/Instructor

© 2017 SPLUNK INC.

1. Use Regex to create powerful filters in
your SPL

2. Use Regex to create field extractions

3. Regex doesn’t have to be hard. You can
do this!

Regex in your SPL

Key
Takeaways

© 2017 SPLUNK INC.

Don't forget to rate this session in the
.conf2017 mobile app

Thank You

Appendix A
Caveats

rex Command – Caveat
Use Rex to Perform SED Style Substitutions

The substitution from rex
comes after the lang field is
extracted.
So even though the event
data is showing us the
substitution, the field lang is
showing the original value.

Caveat:| windbag | search lang="*Norse"
| rex mode=sed "s/Old (Norse)/Not-so-old \1/g"

Appendix B
Exercises to Practice With

Regex Basics
The Main Elements

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:																																																
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Operators:
*	Zero	or	More
+	One	or	More
?	Zero	or	One

Scenario Regex: ^\d+\s\w+\d+\s\d+:\d+:\d+
Learn	by	Fire:	
Which	of	these	will	the	
sample	Regex	match?

A. 002421	Februari	1083	1:242525:22352
B. 07	Feb	17	12:53:36AM
C. Feb	13	2017	18:46:56
D. 14	February	2017	07:45:47Z

(answers	on	next	slide)

Regex Basics
The Main Elements

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:																																																
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Operators:
*	Zero	or	More
+	One	or	More
?	Zero	or	One

A. 002421 Februari 1083 1:242525:22352
B. 07 Feb 17 12:53:36AM
C. Feb 13 2017 18:46:56
D. 14 February 2017 07:45:47:46

Scenario Regex: ^\d+\s\w+\d+\s\d+:\d+:\d+
Learn	by	Fire:	
Which	of	these	will	the	
sample	Regex	match?

Regex Basics
The Main Elements

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:																																																
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Operators:
*	Zero	or	More
+	One	or	More
?	Zero	or	One

Practice:	Create	a Regex	that	describes	all	three	of	the	following	strings

06	February	2017	192.168.1.2
05	Apr	2014	10.2.1.150
31	July	2020	19..15.63	

Regex Basics
The Main Elements

Control	Characters:	
^		Start	of	a	Line
$	End	of	a	Line

Character	Types:																																																
\s		White	Space
\S		Not	white	space
\d	Digit
\D	Not	Digit
\w	Word	Character	
\W	Not	Word	Characters

Operators:
*	Zero	or	More
+	One	or	More
?	Zero	or	One

Scenario:	Create	a Regex	that	describes	the	following	strings

06 February 2017 192.168.1.2
05 Apr 2014 10.2.1.150
31 July 2020 19..15.63	

A	solution:	
\d+\s\w+\s\d+\s\d*\.\d*\.\d*\.\d*

Regex Basics

1.	Open	up	your	Splunk
2.	|	windbag	|	head	20	|	table	_raw	
3.	Copy	the	_raw	data
4.	Paste	the	data	in	Regex101.com	

Goals:	Extract	the	following	fields	for	each	event:
lang
sample
The	Date	without	Time
The	Time

Perform	these	as	“named” extractions

The Main Elements

Replace Command
Switch Data at Search Time

Silly	version	to	try	on	your	own
|	windbag	|	head	20	|	replace	"1"	WITH	"Uno"	in	odd

Try	it,	then	click	the	down	chevron	to	see	the	results

